Whole-brain dynamical modeling for classification
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1. Simulated whole-brain connectomes demonstrate an enhanced inter-individual variability depending on data processing and modeling approach.

2. We thus hypothesized that MRI data processing can impact the application of whole-brain models to subject classification and affect their performance.

3. We also introduced a novel validation approach for whole-brain dynamical models to enhance the classification performance.

4. To this end, we investigate how empirical and simulated whole-brain connectome-derived features can be utilized to classify patients with Parkinson’s disease

against healthy controls in light of varying data processing and model validation.

Methods: Whole-brain dynamical modeling and classification using machine learning

“*Participants: 51 (30 males) healthy controls and 65 (45 males) patients with Parkinson’s disease
- MRI acquisition: T1-weighted image, resting-state fMRI (rsfMRI), and diffusion-weighted images (DWI) with 64 directions

More details
- MRI processing: Extracting blood oxygenation level-dependent (BOLD) signals from rsfMRI and reconstructing whole-brain tractography with 10M streamlines using DWI ﬁ

“*Whole-brain model: Convolution-based two-population model (Jansen-Rit type'2) for electrical signals + Balloon-Windkessel model34 for BOLD signals

“*Experimental conditions: Four temporal filters (NF, BF, LF, and HF) for empirical and simulated BOLD signals + Two parcellation schemes (Schaefer 100 Parcels and Desikan-Killiany)
- NF: no filtering, BF: broad frequency band [0.01,0.1] Hz, LF: low frequency band [0.01,0.05] Hz, HF: high frequency band [0.05,0.1] Hz

v Search for the optimal model parameters corresponding to the maximal similarity between empirical and simulated connectomes
v Behavioral model fitting (a novel approach): Search for the optimal model parameters corresponding to the maximal difference between groups of controls and patients

“*Machine learning: A regularized (LASSO: the least absolute shrinkage and selection operator) logistic regression using a cross-validated model fitting and confound regression5

Results: Data processing and model fitting for effective classification of Parkinson’s disease
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Conclusion

@ The novel behavioral model fitting paradigm results in an enhanced differentiation of disease and
control groups and improved classification of Parkinsonian patients by machine-learning approaches.

@ The low-frequency [0.01,0.05] Hz band-pass filtering of BOLD signals can have a beneficial effect on
the prediction performance of Parkinson’s disease.

® The prediction performance can further be improved when multiple brain parcellation schemes were
utilized.

® The results further suggest an application of the results of whole-brain simulations for cognitive or
clinical investigation of inter-individual differences and disease diagnosis.
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